Part Number Hot Search : 
SMV2020 CDBU42 IRGPC50U MT20N50 LC21005A N1A36307 L78M12CP 60N10
Product Description
Full Text Search
 

To Download TH72015KLD Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 TH72015
433MHz FSK/ASK Transmitter Features
! ! ! ! ! ! ! ! Fully integrated PLL-stabilized VCO Frequency range from 380 MHz to 450 MHz Single-ended RF output FSK through crystal pulling allows modulation from DC to 40 kbit/s High FSK deviation possible for wideband data transmission ASK achieved by on/off keying of internal power amplifier up to 40 kbit/s Wide power supply range from 1.95 V to 5.5 V Very low standby current ! On-chip low voltage detector ! High over-all frequency accuracy ! FSK deviation and center frequency independently adjustable ! Adjustable output power range from -12 dBm to +10 dBm ! Adjustable current consumption from 3.4 mA to 10.6 mA ! Conforms to EN 300 220 and similar standards ! 10-pin Quad Flat No-Lead Package (QFN)
Ordering Information
Part Number TH72015 Temperature Code K (-40 C to 125 C) Package Code LD (10L QFN 3x3 Dual) Delivery Form 120 pc/tray 5000 pc/T&R
Application Examples
! ! ! ! ! ! ! ! ! General digital data transmission Tire Pressure Monitoring Systems (TPMS) Remote Keyless Entry (RKE) Wireless access control Alarm and security systems Garage door openers Remote Controls Home and building automation Low-power telemetry systems
Pin Description
top ASKDTA FSKDTA FSKSW ROI ENTX VCC VEE OUT VEE PSEL
10 9 8 7 6
bottom
1 2 3 4 5
TH72015
General Description
The TH72015 FSK/ASK transmitter IC is designed for applications in the European 433 MHz industrialscientific-medical (ISM) band, according to the EN 300 220 telecommunications standard; but it can also be used in other countries with similar standards, e.g. FCC part 15.231. The transmitter's carrier frequency fc is determined by the frequency of the reference crystal fref. The integrated PLL synthesizer ensures that carrier frequencies, ranging from 380 MHz to 450 MHz, can be achieved. This is done by using a crystal with a reference frequency according to: fref = fc/N, where N = 32 is the PLL feedback divider ratio.
39010 72015 Rev. 008
Page 1 of 20
Data Sheet June/07
TH72015
433MHz FSK/ASK Transmitter Document Content
1 Theory of Operation ...................................................................................................3
1.1 1.2 General............................................................................................................................. 3 Block Diagram .................................................................................................................. 3
2
Functional Description ..............................................................................................3
2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 Crystal Oscillator .............................................................................................................. 3 FSK Modulation ................................................................................................................ 4 Crystal Pulling................................................................................................................... 4 ASK Modulation................................................................................................................ 5 Output Power Selection.................................................................................................... 5 Lock Detection.................................................................................................................. 5 Low Voltage Detection...................................................................................................... 5 Mode Control Logic .......................................................................................................... 6 Timing Diagrams .............................................................................................................. 6
3 4
Pin Definition and Description ..................................................................................7 Electrical Characteristics ..........................................................................................8
4.1 4.2 4.3 4.4 4.5 4.6 Absolute Maximum Ratings .............................................................................................. 8 Normal Operating Conditions ........................................................................................... 8 Crystal Parameters ........................................................................................................... 8 DC Characteristics............................................................................................................ 9 AC Characteristics .......................................................................................................... 10 Output Power Steps ....................................................................................................... 10
5
Typical Operating Characteristics ..........................................................................11
5.1 5.2 DC Characteristics.......................................................................................................... 11 AC Characteristics .......................................................................................................... 14
6
Test Circuit ...............................................................................................................17
6.1 Test circuit component list to Fig. 18 .............................................................................. 17
7
Package Description ................................................................................................18
7.1 7.2 Soldering Information ..................................................................................................... 18 Recommended PCB Footprints ...................................................................................... 18
8 9 10
Reliability Information..............................................................................................19 ESD Precautions ......................................................................................................19 Disclaimer .................................................................................................................20
Page 2 of 20 Data Sheet June/07
39010 72015 Rev. 008
TH72015
433MHz FSK/ASK Transmitter 1 Theory of Operation
1.1 General
As depicted in Fig.1, the TH72015 transmitter consists of a fully integrated voltage-controlled oscillator (VCO), a divide-by-32 divider (div32), a phase-frequency detector (PFD) and a charge pump (CP). An internal loop filter determines the dynamic behavior of the PLL and suppresses reference spurious signals. A Colpitts crystal oscillator (XOSC) is used as the reference oscillator of a phase-locked loop (PLL) synthesizer. The VCO's output signal feeds the power amplifier (PA). The RF signal power Pout can be adjusted in four steps from Pout = -12 dBm to +10 dBm, either by changing the value of resistor RPS or by varying the voltage VPS at pin PSEL. The open-collector output (OUT) can be used either to directly drive a loop antenna or to be matched to a 50Ohm load. Bandgap biasing ensures stable operation of the IC at a power supply range of 1.95 V to 5.5 V.
1.2 Block Diagram
RPS
VCC PSEL ASKDTA
10
ENTX
6
1
5
PLL mode control 32 PA
8
OUT
antenna matching network
ROI
PFD 4
XOSC
XTAL FSKSW CX2 CX1 3 2
FSKDTA
XBUF
CP
VCO
low voltage detector
7
VEE
9
VEE
Fig. 1:
Block diagram with external components
2 Functional Description
2.1 Crystal Oscillator
A Colpitts crystal oscillator with integrated functional capacitors is used as the reference oscillator for the PLL synthesizer. The equivalent input capacitance CRO offered by the crystal oscillator input pin ROI is about 18pF. The crystal oscillator is provided with an amplitude control loop in order to have a very stable frequency over the specified supply voltage and temperature range in combination with a short start-up time.
39010 72015 Rev. 008
Page 3 of 20
Data Sheet June/07
TH72015
433MHz FSK/ASK Transmitter
2.2 FSK Modulation
FSK modulation can be achieved by pulling the crystal oscillator frequency. A CMOScompatible data stream applied at the pin FSKDTA digitally modulates the XOSC via an integrated NMOS switch. Two external pulling capacitors CX1 and CX2 allow the FSK deviation f and the center frequency fc to be adjusted independently. At FSKDTA = 0, CX2 is connected in parallel to CX1 leading to the lowfrequency component of the FSK spectrum (fmin); while at FSKDTA = 1, CX2 is deactivated and the XOSC is set to its high frequency fmax. An external reference signal can be directly ACcoupled to the reference oscillator input pin ROI. Then the transmitter is used without a crystal. Now the reference signal sets the carrier frequency and may also contain the FSK (or FM) modulation. Fig. 2: Crystal pulling circuitry
ROI
VCC
XTAL
FSKSW
CX2 CX1
VEE
FSKDTA 0 1
Description fmin= fc - f (FSK switch is closed) fmax= fc + f (FSK switch is open)
2.3 Crystal Pulling
A crystal is tuned by the manufacturer to the required oscillation frequency f0 at a given load capacitance CL and within the specified calibration tolerance. The only way to pull the oscillation frequency is to vary the effective load capacitance CLeff seen by the crystal. Figure 3 shows the oscillation frequency of a crystal as a function of the effective load capacitance. This capacitance changes in accordance with the logic level of FSKDTA around the specified load capacitance. The figure illustrates the relationship between the external pulling capacitors and the frequency deviation. It can also be seen that the pulling sensitivity increases with the reduction of CL. Therefore, applications with a high frequency deviation require a low load capacitance. For narrow band FSK applications, a higher load capacitance could be chosen in order to reduce the frequency drift caused by the tolerances of the chip and the external pulling capacitors.
f
XTAL L1 f max C1 R1 fc C0 CL eff
f min
CX1 CRO CX1+CRO
CL
(CX1+CX2) CRO CX1+CX2+CRO
CL eff
Fig. 3:
Crystal pulling characteristic
For ASK applications CX2 can be omitted. Then CX1 has to be adjusted for center frequency.
39010 72015 Rev. 008
Page 4 of 20
Data Sheet June/07
TH72015
433MHz FSK/ASK Transmitter
2.4 ASK Modulation
ASKDTA 0 1 Description Power amplifier is turned off Power amplifier is turned on (according to the selected output power step)
The PLL transmitter can be ASK-modulated by applying a data stream directly at the pin ASKDTA. This turns the internal current sources of the power amplifier on and off and therefore leads to an ASK signal at the output.
2.5
Output Power Selection
The transmitter is provided with an output power selection feature. There are four predefined output power steps and one off-step accessible via the power selection pin PSEL. A digital power step adjustment was chosen because of its high accuracy and stability. The number of steps and the step sizes as well as the corresponding power levels are selected to cover a wide spectrum of different applications. The implementation of the output power control logic is shown in figure 4. There are two matched current sources with an amount of about 8 A. One current source is directly applied to the PSEL pin. The other current source is used for the generation of reference voltages with a resistor ladder. These reference voltages are defining the thresholds between the power steps. The four comparators deliver thermometer-coded control signals depending on the voltage level at the pin PSEL. In order to have a certain amount of ripple tolerance in a noisy environment the comparators are provided with a little hysteresis of about 20 mV. With these control signals, weighted current sources of the power amplifier are switched on or off to set the desired output power level (Digitally Controlled Current Source). The LOCK, ASK signal and the output of the low voltage detector are gating this current source.
RPS
PSEL
&
ASKDTA
&
&
&
&
OUT
Fig. 4:
Block diagram of output power control circuitry
There are two ways to select the desired output power step. First by applying a DC voltage at the pin PSEL, then this voltage directly selects the desired output power step. This kind of power selection can be used if the transmission power must be changed during operation. For a fixed-power application a resistor can be used which is connected from the PSEL pin to ground. The voltage drop across this resistor selects the desired output power level. For fixed-power applications at the highest power step this resistor can be omitted. The pin PSEL is in a high impedance state during the "TX standby" mode.
2.6
Lock Detection
The lock detection circuitry turns on the power amplifier only after PLL lock. This prevents from unwanted emission of the transmitter if the PLL is unlocked.
2.7
Low Voltage Detection
The supply voltage is sensed by a low voltage detect circuitry. The power amplifier is turned off if the supply voltage drops below a value of about 1.85 V. This is done in order to prevent unwanted emission of the transmitter if the supply voltage is too low.
39010 72015 Rev. 008
Page 5 of 20
Data Sheet June/07
TH72015
433MHz FSK/ASK Transmitter
2.8 Mode Control Logic
ENTX 0 1 Mode TX standby TX active Description TX disabled TX enable
The mode control logic allows two different modes of operation as listed in the following table. The mode control pin ENTX is pulleddown internally. This guarantees that the whole circuit is shut down if this pin is left floating.
2.9
Timing Diagrams
After enabling the transmitter by the ENTX signal, the power amplifier remains inactive for the time ton, the transmitter start-up time. The crystal oscillator starts oscillation and the PLL locks to the desired output frequency within the time duration ton. After successful PLL lock, the LOCK signal turns on the power amplifier, and then the RF carrier can be FSK or ASK modulated.
high
high
ENTX
low
high
ENTX
low
high
LOCK
low
LOCK
low
high
high
FSKDTA
low
ASKDTA
low
RF carrier
t
t
t on
t on
Fig. 5:
Timing diagrams for FSK and ASK modulation
39010 72015 Rev. 008
Page 6 of 20
Data Sheet June/07
TH72015
433MHz FSK/ASK Transmitter 3 Pin Definition and Description
Pin No. 1 Name ASKDTA I/O Type input
ASKDTA 1
1.5k
Functional Schematic
0: ENTX=1 1: ENTX=0
Description ASK data input, CMOS compatible with operation mode dependent pull-up circuit TX standby: no pull-up TX active: pull up FSK data input, CMOS compatible with operation mode dependent pull-up circuit TX standby: no pull-up TX active: pull up XOSC FSK pulling pin, MOS switch
2
FSKDTA
input
FSKDTA 2
1.5k
0: ENTX=1 1: ENTX=0
3
FSKSW
analog I/O
FSKSW 3
4
ROI
analog I/O
25k
ROI 4
36p
XOSC connection to XTAL, Colpitts type crystal oscillator
36p
5
ENTX
input
ENTX 5
1.5k
mode control input, CMOS-compatible with internal pull-down circuit
6
PSEL
analog I/O
8A
power select input, high impedance comparator logic TX standby: IPSEL = 0 TX active: IPSEL = 8A
PSEL 6
1.5k
7 8
VEE OUT
ground output
OUT 8
VCC
negative power supply power amplifier output, open collector
VEE
VEE
9 10
VEE VCC
ground supply
negative power supply positive power supply
39010 72015 Rev. 008
Page 7 of 20
Data Sheet June/07
TH72015
433MHz FSK/ASK Transmitter 4 Electrical Characteristics
4.1 Absolute Maximum Ratings
Parameter Supply voltage Input voltage Storage temperature Junction temperature Thermal Resistance Power dissipation Electrostatic discharge Symbol VCC VIN TSTG TJ RthJA Pdiss VESD human body model (HBM) according to CDF-AECQ100-002 2.0 Condition Min 0 -0.3 -65 Max 7.0 VCC+0.3 150 150 49 0.12 Unit V V C C K/W W kV
4.2 Normal Operating Conditions
Parameter Supply voltage Operating temperature Input low voltage CMOS Input high voltage CMOS XOSC frequency VCO frequency FSK deviation FSK Data rate ASK Data rate Symbol VCC TA VIL VIH fref fc f R R ENTX, DTA pins ENTX, DTA pins set by the crystal fc = 32 * fref depending on CX1, CX2 and crystal parameters NRZ NRZ 0.7*VCC 11.9 380 2.5 14 450 40 40 40 Condition Min 1.95 -40 Max 5.5 125 0.3*VCC Unit V C V V MHz MHz kHz kbit/s kbit/s
4.3 Crystal Parameters
Parameter Crystal frequency Load capacitance Static capacitance Series resistance Spurious response Symbol f0 CL C0 R1 aspur only required for FSK Condition fundamental mode, AT Min 11.9 10 Max 14 15 7 70 -10 Unit MHz pF pF dB
39010 72015 Rev. 008
Page 8 of 20
Data Sheet June/07
TH72015
433MHz FSK/ASK Transmitter
4.4 DC Characteristics
all parameters under normal operating conditions, unless otherwise stated; typical values at TA = 23 C and VCC = 3 V Parameter Operating Currents Standby current Supply current in power step 0 Supply current in power step 1 Supply current in power step 2 Supply current in power step 3 Supply current in power step 4 Digital Pin Characteristics Input low voltage CMOS Input high voltage CMOS Pull down current ENTX pin Low level input current ENTX pin High level input current DTA pins Pull up current DTA pins active Pull up current DTA pins standby FSK Switch Resistance MOS switch On resistance MOS switch Off resistance Power Select Characteristics Power select current Power select voltage step 0 Power select voltage step 1 Power select voltage step 2 Power select voltage step 3 Power select voltage step 4 IPSEL VPS0 VPS1 VPS2 VPS3 VPS4 VLVD ENTX=1 ENTX=1 ENTX=1 ENTX=1 ENTX=1 ENTX=1 0.14 0.37 0.78 1.55 7.0 8.6 9.9 0.035 0.24 0.60 1.29 A V V V V V RON ROFF FSKDTA=0 ENTX=1 FSKDTA=1 ENTX=1 1 20 70 M VIL VIH IPDEN IINLEN IINHDTA IPUDTAa IPUDTAs ENTX, DTA pins ENTX, DTA pins ENTX=1 ENTX=0 FSKDTA=1 ASKDTA=1 FSKDTA=0, ASKDTA=0, ENTX=1 FSKDTA=0, ASKDTA=0, ENTX=0 0.1 1.5 -0.3 0.7*VCC 0.2 2.0 0.3*Vcc VCC+0.3 20 0.02 0.02 12 0.02 V V A A A A A ISBY ICC0 ICC1 ICC2 ICC3 ICC4 ENTX=0, TA=85C ENTX=0, TA=125C ENTX=1 ENTX=1 ENTX=1 ENTX=1 ENTX=1 1.5 2.1 3.0 4.5 7.3 2.5 3.4 4.6 6.5 10.6 0.2 200 4 3.8 4.9 6.2 8.5 13.3 nA A mA mA mA mA mA Symbol Condition Min Typ Max Unit
Low Voltage Detection Characteristic Low voltage detect threshold ENTX=1 1.75 1.85 1.95 V
39010 72015 Rev. 008
Page 9 of 20
Data Sheet June/07
TH72015
433MHz FSK/ASK Transmitter
4.5 AC Characteristics
all parameters under normal operating conditions, unless otherwise stated; typical values at TA = 23 C and VCC = 3 V; test circuit shown in Fig. 18, fc = 433.92 MHz Parameter CW Spectrum Characteristics Output power in step 0 (Isolation in off-state) Output power in step 1 Output power in step 2 Output power in step 3 Output power in step 4 Phase noise Spurious emissions according to EN 300 220-1 (2000.09) table 13 Poff P1 P2 P3 P4 L(fm) Pspur ENTX=1 ENTX=1 ENTX=1 ENTX=1 ENTX=1 @ 200kHz offset 47MHz< f <74MHz 87.5MHz< f <118MHz 174MHz< f <230MHz 470MHz< f <862MHz B=100kHz f < 1GHz, B=100kHz f > 1GHz, B=1MHz Start-up Parameters Start-up time Frequency Stability Frequency stability vs. supply voltage Frequency stability vs. temperature Frequency stability vs. variation range of CRO dfVCC dfTA dfCRO crystal at constant temperature 3 10 20 ppm ppm ppm ton from standby to transmit mode 0.8 1.2 ms -13 -3.5 2 4.5 -12 -3 3 8 -88 -70 -10 1) -1.5 4.5 10
1) 1) 1)
Symbol
Condition
Min
Typ
Max
Unit
dBm dBm dBm dBm dBm dBc/Hz dBm
-83 -54
-36 -30
dBm dBm
1) output matching network tuned for 5V supply
4.6 Output Power Steps
Power step RPS / k 0 <3 1 22 2 56 3 120 4 not connected
39010 72015 Rev. 008
Page 10 of 20
Data Sheet June/07
TH72015
433MHz FSK/ASK Transmitter 5 Typical Operating Characteristics
5.1 DC Characteristics
I SBY
5A 4A 3A 2A 1A 200nA
Standby current
125C
85C
150nA 100nA 50nA
25C
0 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
Vcc
Fig. 6:
[V]
Standby current limits
power step 0 3.4 125C 105C 85C [mA]
3.0
2.6
Icc
25C 0C -20C -40C
2.2
1.8 1.8 2.2 2.6 3.0 3.4 3.8 4.2 Vcc [V] 4.6 5.0 5.4 5.8
Fig. 7:
Supply current in power step 0
39010 72015 Rev. 008
Page 11 of 20
Data Sheet June/07
TH72015
433MHz FSK/ASK Transmitter
power step 1 4.2 125C 105C 85C
3.9
[mA]
3.6 25C 3.3 0C -20C -40C 2.7 1.8 2.2 2.6 3.0 3.4 3.8 4.2 Vcc [V] 4.6 5.0 5.4 5.8
Icc
3.0
Fig. 8:
Supply current in power step 1
power step 2 5.4 125C 5.0 [mA] 105C 85C
4.6
25C 0C
Icc 4.2
-20C -40C
3.8 1.8 2.2 2.6 3.0 3.4 3.8 4.2 Vcc [V] 4.6 5.0 5.4 5.8
Fig. 9:
Supply current in power step 2
39010 72015 Rev. 008
Page 12 of 20
Data Sheet June/07
TH72015
433MHz FSK/ASK Transmitter
power step 3 7.3 7.0 6.7 [mA] 25C 6.4 0C 6.1 -20C 5.8 5.5 1.8 2.2 2.6 3.0 3.4 3.8 4.2 Vcc [V] 4.6 5.0 5.4 5.8 -40C 125C 105C 85C
Icc
Fig. 10: Supply current in power step 3
power step 4 12.0 11.5 11.0 [mA] 25C 10.5 0C 10.0 9.5 9.0 1.8 2.2 2.6 3.0 3.4 3.8 4.2 Vcc [V] 4.6 5.0 5.4 5.8 -20C -40C 125C 105C 85C
Icc
Fig. 11: Supply current in power step 4
39010 72015 Rev. 008
Page 13 of 20
Data Sheet June/07
TH72015
433MHz FSK/ASK Transmitter
5.2 AC Characteristics
* Data according to test circuit in Fig. 18
power step 1 -11.5 25C 85C 125C -40C
-12.0
[dBm] Pout
-12.5
-13.0
-13.5
-14.0 1.8 2.2 2.6 3.0 3.4 3.8 4.2 Vcc [V] 4.6 5.0 5.4 5.8
Fig. 12: Output power in step 1
power step 2 -1.0
-2.0
[dBm]
Pout
-3.0
25C 85C 125C -40C
-4.0
1.8
2.2
2.6
3.0
3.4
3.8 4.2 Vcc [V]
4.6
5.0
5.4
5.8
Fig. 13: Output power in step 2
39010 72015 Rev. 008
Page 14 of 20
Data Sheet June/07
TH72015
433MHz FSK/ASK Transmitter
power step 3 5.0
4.0
[dBm]
3.0 25C 2.0 85C 125C -40C 1.0
Pout
0 1.8 2.2 2.6 3.0 3.4 3.8 4.2 Vcc [V] 4.6 5.0 5.4 5.8
Fig. 14: Output power in step 3
power step 4 12.0
10.0
[dBm]
8.0
25C 85C 125C -40C
Pout
6.0
4.0
2.0 1.8 2.2 2.6 3.0 3.4 3.8 4.2 Vcc [V] 4.6 5.0 5.4 5.8
Fig. 15: Output power in step 4
39010 72015 Rev. 008
Page 15 of 20
Data Sheet June/07
TH72015
433MHz FSK/ASK Transmitter
Fig. 16: RF output signal with PLL reference spurs
Fig. 17: Single sideband phase noise
39010 72015 Rev. 008
Page 16 of 20
Data Sheet June/07
TH72015
433MHz FSK/ASK Transmitter 6 Test Circuit
CM2 LM CB1 CM1 CM3 LT
10 9 8 7 6
OUT
RPS
VCC
ASKDTA
FSKDTA
FSKSW
1
2
3
4
CX2 CX1 CB0
12 123 4 123
GND
GND
ASK_DTA GND FSK_DTA
VCC
VCC
Fig. 18: Test circuit for FSK and ASK with 50 matching network
6.1 Test circuit component list to Fig. 18
Part
CM1 CM2 CM3 LM LT CX1_FSK CX1_ASK CX2 RPS CB0 CB1 XTAL
Size
0805 0805 0805 0805 0805 0805 0805 0805 0805 1206 0805 HC49/S
Value @ 433.92 MHz
5.6 pF 10 pF 82 pF 33 nH 33 nH 12 pF 27 pF 33 pF see section 4.6 220 nF 330 pF 13.56000MHz
Tolerance
5% 5% 5% 5% 5% 5% 5% 5% 5% 20% 10% 30ppm calibr. 30ppm temp.
ENTX GND
ENTX
5
ROI
PSEL
XTAL
VEE
OUT
VEE
Description
impedance matching capacitor impedance matching capacitor impedance matching capacitor impedance matching inductor, note 2 output tank inductor, note 2 XOSC FSK capacitor (f = 28 kHz), note 1 XOSC ASK capacitor, trimmed to fC, note 1 XOSC capacitor (f = 28 kHz), note 1 only needed for FSK power-select resistor de-coupling capacitor de-coupling capacitor fundamental wave crystal, CL = 12 pF, C0, max = 7 pF, R1 = 60
Note 1: value depending on crystal parameters Note 2: for high-power applications high-Q wire-wound inductors should be used
39010 72015 Rev. 008
Page 17 of 20
Data Sheet June/07
TH72015
433MHz FSK/ASK Transmitter 7 Package Description
The device TH72015 is RoHS compliant.
D 10 6 L 0.23 E E2 exposed pad 0.36 D2
0.225x45 1 5 A3 b e A A1
The "exposed pad" is not connected to internal ground, it should not be connected to the PCB.
Fig. 7: all Dimensions in mm D
min max 2.85 3.15
10L QFN 3x3 Dual
E
2.85 3.15
D2
2.23 2.48
E2
1.49 1.74
A
0.80 1.00
A1
0 0.05
A3
0.20
L
0.3 0.5
e
0.50
b
0.18 0.30
all Dimensions in inch
min 0.112 0.112 0.0878 0.051 0.0315 0 0.0118 0.0071 0.0079 0.0197 max 0.124 0.124 0.0976 0.055 0.0393 0.002 0.0197 0.0118
7.1 Soldering Information
* The device TH72015 is qualified for MSL3 with soldering peak temperature 260 deg C according to JEDEC J-STD-20.
7.2
Recommended PCB Footprints
X Y
10 6
e C PL
all Dimensions in mm Z
min max 3.55 3.90
G
1.9 2.3
D2th
3.2 3.6
E2th
1.3 1.7
X
0.25 0.30
Y
0.7 1.0
CPL
0.3 0.5
e
0.5
ZG
1 5
E2 th
all Dimensions in inch
min 0.1398 0.0748 0.1260 0.0512 0.0098 0.0276 0.0591 0.0197 max 0.1535 0.0906 0.1417 0.0669 0.0118 0.0394 0.0197
D2 th
solder pad
solder stop
Fig. 8:
PCB land pattern style
39010 72015 Rev. 008
Page 18 of 20
Data Sheet June/07
TH72015
433MHz FSK/ASK Transmitter 8 Reliability Information
This Melexis device is classified and qualified regarding soldering technology, solderability and moisture sensitivity level, as defined in this specification, according to following test methods: Reflow Soldering SMD's (Surface Mount Devices) * * IPC/JEDEC J-STD-020 "Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices (classification reflow profiles according to table 5-2)" EIA/JEDEC JESD22-A113 "Preconditioning of Nonhermetic Surface Mount Devices Prior to Reliability Testing (reflow profiles according to table 2)"
Wave Soldering SMD's (Surface Mount Devices) and THD's (Through Hole Devices) * * EN60749-20 "Resistance of plastic- encapsulated SMD's to combined effect of moisture and soldering heat" EIA/JEDEC JESD22-B106 and EN60749-15 "Resistance to soldering temperature for through-hole mounted devices"
Iron Soldering THD's (Through Hole Devices) * EN60749-15 "Resistance to soldering temperature for through-hole mounted devices"
Solderability SMD's (Surface Mount Devices) and THD's (Through Hole Devices) * EIA/JEDEC JESD22-B102 and EN60749-21 "Solderability"
For all soldering technologies deviating from above mentioned standard conditions (regarding peak temperature, temperature gradient, temperature profile etc) additional classification and qualification tests have to be agreed upon with Melexis. The application of Wave Soldering for SMD's is allowed only after consulting Melexis regarding assurance of adhesive strength between device and board. Melexis is contributing to global environmental conservation by promoting lead free solutions. For more information on qualification of RoHS compliant products (RoHS = European directive on the Restriction Of the Use of Certain Hazardous Substances) please visit the quality page on our website: http://www.melexis.com/quality_leadfree.aspx
9 ESD Precautions
Electronic semiconductor products are sensitive to Electro Static Discharge (ESD). Always observe Electro Static Discharge control procedures whenever handling semiconductor products.
39010 72015 Rev. 008
Page 19 of 20
Data Sheet June/07
TH72015
433MHz FSK/ASK Transmitter 10 Disclaimer
1) The information included in this documentation is subject to Melexis intellectual and other property rights. Reproduction of information is permissible only if the information will not be altered and is accompanied by all associated conditions, limitations and notices. 2) Any use of the documentation without the prior written consent of Melexis other than the one set forth in clause 1 is an unfair and deceptive business practice. Melexis is not responsible or liable for such altered documentation. 3) The information furnished by Melexis in this documentation is provided 'as is'. Except as expressly warranted in any other applicable license agreement, Melexis disclaims all warranties either express, implied, statutory or otherwise including but not limited to the merchantability, fitness for a particular purpose, title and non-infringement with regard to the content of this documentation. 4) Notwithstanding the fact that Melexis endeavors to take care of the concept and content of this documentation, it may include technical or factual inaccuracies or typographical errors. Melexis disclaims any responsibility in connection herewith. 5) Melexis reserves the right to change the documentation, the specifications and prices at any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with Melexis for current information. 6) Melexis shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interrupt of business or indirect, special incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the information in this documentation. 7) The product described in this documentation is intended for use in normal commercial applications. Applications requiring operation beyond ranges specified in this documentation, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment are specifically not recommended without additional processing by Melexis for each application. 8) Any supply of products by Melexis will be governed by the Melexis Terms of Sale, published on www.melexis.com. (c) Melexis NV. All rights reserved.
For the latest version of this document, go to our website at:
www.melexis.com
Or for additional information contact Melexis Direct: Europe, Africa:
Phone: +32 1367 0495 E-mail: sales_europe@melexis.com
Americas:
Phone: +1 603 223 2362 E-mail: sales_usa@melexis.com
Asia:
Phone: +32 1367 0495 E-mail: sales_asia@melexis.com
ISO/TS 16949 and ISO14001 Certified 39010 72015 Rev. 008 Page 20 of 20 Data Sheet June/07


▲Up To Search▲   

 
Price & Availability of TH72015KLD

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X